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Abstract— We present an approach for vehicle classification
in IR video sequences by integrating detection, tracking and
recognition. The method has two steps. First, the moving
target is automatically detected using a detection algorithm.
Next, we perform simultaneous tracking and recognition
using an appearance-model based particle filter. We present
a probabilistic algorithm for tracking and recognition that
incorporates robust template matching and incremental
subspace update. There are two template matching methods
used in the tracker: one is robust to small perturbation
and the other to background clutter. Each method yields
a probability of matching. The templates are represented
using mixed probabilities and updated when the appearance
models cannot adequately represent the variations in object
appearance. We also model the tracking history using a
nonlinear subspace described by probabilistic kernel princi-
pal components analysis, which provides a third probability.
The most-recent tracking result is incrementally integrated
into the nonlinear subspace by augmenting the kernel Gram
matrix with one row and one column. The product of the
three probabilities is defined as the observation likelihood
used in a particle filter to derive the tracking and recognition
result. The tracking result is evaluated at each frame. Low
confidence in tracking performance initiates a new cycle of
detection, tracking and classification. We demonstrate the
robustness of the proposed method using outdoor IR video
sequences.

Index Terms— detection, tracking, recognition, tracking
evaluation, IR video

I. INTRODUCTION

Recently, video-based vehicle classification has gained
much attention, especially in automatic traffic manage-
ment, surveillance and battlefield awareness. Typically,
detection and tracking are often solved before classifi-
cation. [1] discusses pose determination and recognition
of vehicles in traffic scenes, which under normal condi-
tions stand on the ground-plane. In [2], a segmentation
algorithm uses deformable template models to segment a
vehicle of interest both from the stationary complex back-
ground and other moving vehicles in an image sequence.
In addition to segmentation, the deformable template
algorithm also classifies the vehicle of interest. In [3],
the author describes a system for automatic recognition
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of vehicle type from frontal views. They only use images
and it does not involve tracking. In [4], a method for rec-
ognizing a vehicle’s maker and model is proposed. It first
creates a compressed database of local features of target
vehicles from training images and then matches them with
the local features of the probe image for recognition. Ma
and Grimson [5] proposed a repeatable and discriminative
feature to describe a relative large region and the whole set
of features forms a rich representation for object classes.

Figure 1. A flow chart of our system.

In this paper, we tackle the problem of vehicle classifi-
cation by integrating detection, tracking and recognition.
In our system, the moving vehicle is automatically de-
tected, tracked and recognized without any interruptions.
The flow chart of our system is shown in Fig.1. The video
sequences are input to our system. The moving target is



detected using temporal variance analysis. The target is
tracked and classified simultaneously using a robust and
adaptive appearance model and mixtures of probabilistic
principal component analysis [6](PPCA). Evaluation of
the tracking performance is performed at each frame. If
the performance falls below some threshold, the cycle
of detection, tracking and classification is re-initiated,
otherwise the tracking and classification propagates to
the next frame. The target-to-background contrast is very
low for the IR images. This adds much difficulty for
detection and tracking of the moving target. Feature-based
classification methods fail due to the insufficient feature
points on the detected vehicles.

Unlike Zhou et al. [7]’s method which manually selects
the moving target in the first frame, we automatically
select it using temporal variance analysis algorithm. Be-
cause of the presence of smoke and dust in IR videos,
it is hard to position a tight rectangular bounding box
from the detection algorithm. Consequently, the tracker
drifts quickly. This brings a need for the evaluation of
the tracking performance. The evaluation generates a
confidence measure to indicate whether we should restart
the detection once the tracking confidence falls below
a threshold. In [7], Zhou et al. use sum of squared
distance(SSD) for the tracked object and template to
give the probability of tracking. Therefore, it gives the
same weight to each pixel. Here we propose to use two
template matching algorithms, Image Euclidean Distance
and Image Weighted Distance, to substitute SSD. Both
distances assign a weight based on the difference between
pixel intensities. These two algorithms are robust to
small perturbation and background clutter. Additionally, a
third probability pKPCA is provided by the probabilistic
kernel Principal Component Analysis(PCA) that models
a nonlinear subspace of the tracking history. The com-
bination of these separate tracking algorithms has been
justified in [8]. After tracking, we update the models
to adapt to the most-recent appearance change. For the
two template matching methods, the template library is
modeled using mixed probabilities. The template with the
smallest weight is replaced by the most-recent tracking
result when the probability is below some threshold. The
weight for each mixture component is updated adaptively.
For the nonlinear subspace modeling of tracking history,
the most-recent tracking result is added by augmenting
the kernel Gram matrix with one more row and column.
The standard particle filter algorithm is then used: the
samples are re-sampled to eliminate particles with small
importance weights and concentrate on particles with
large weights. We use mixtures of PPCA [6] for appear-
ance modeling. We then compute the posterior probability
of finding the appearance of each object in the given
video and assign the label corresponding to the maximum.
Tracking and classification then proceed to the next frame
to repeat the same procedure.

The remainder of the paper is organized as follows. In
the next section, we review the particle filter algorithm.
Section III briefly describes detection algorithm. Section

IV details the two template matching algorithms and how
to update the template library. Section V presents the
probabilistic kernel PCA used for modeling the tracking
history. Section VI describes the simultaneous tracking
and classification algorithm. Section VII describes evalu-
ation for the tracking. Experimental results are reported
in section VIII. In section IX, we conclude our work.

II. PARTICLE FILTER

The particle filter is a Bayesian sequential importance
sampling technique for estimating posterior distribution
of state variables characterizing a dynamic system. It
consists of essentially two steps: prediction and update.
The predicting distribution of xt given all available ob-
servations z1:t−1 = {z1, z2, · · · , zt−1} up to time t − 1,
denoted by p(xt|z1:t−1), is recursively computed as

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (1)

At time t, the observation zt is available and the state
vector is updated using the Bayes’s rule

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(2)

where p(zt|xt) denotes the observation likelihood.
In the particle filter, the posterior p(xt|z1:t) is approx-

imated by a finite set of N samples {xi
t}i=1,···,N with

importance weights wi
t. The candidate samples xi

t are
drawn from an importance distribution q(xt|x1:t−1, z1:t)
and the weights of the samples are updated as

wi
t = wi

t−1

p(zt|xi
t)p(xi

t|xi
t−1)

q(xt|x1:t−1, z1:t)
(3)

The samples are resampled to generate a set of equally
weighted particles according to their importance weights
to avoid degeneracy. In the case of the bootstrap filter
q(xt|x1:t−1, z1:t) = p(xt|xt−1) and the weights become
the observation likelihood p(zt|xt).

III. TARGET DETECTION

Distinguishing foreground objects from the stationary
background is both a significant and difficult research
problem. Detection plays an important role in our system.
It is a prerequisite for tracking and places an initial
bounding box around the target and re-initialize the target
if tracking confidence measure is low. We adopt temporal
variance analysis for object detection. It is effective, easy
to implement and can detect moving objects at real-time.
In the following, we review the temporal variance analysis
for object detection.

Given a video sequences {Ii}, we set m1 = I1 and
mv1 = I1×I1. The operator × is the element-by-element
product of two matrices. The following mi, mvi and
imvari are defined as

mi = ((N − 1) ∗mi−1 + Ii)/N (4)
mvi = ((N − 1) ∗mvi−1 + Ii × Ii)/N (5)

imvari =
√

mvi −mi ×mi, (6)



where N is the window size for detection which is 150
in our experiment. mi, mvi and imvari are updated as i
involves.

We apply fix-level threshold to each element p(i, j) in
imvari

p(i, j) =
{

1 if p(i, j) > T
0 otherwise

where T is the threshold which is preset by the user. Now
imvari is converted to a binary image which is dubbed as
variance image. We then select the rectangular bounding
box for the moving targets by checking p(i, j) = 1 in the
image.

IV. TEMPLATE MATCHING

Template tracking was suggested in the computer vision
literature in [9] that dates back to 1981. The object is
tracked through the video by exacting a template from the
first frame and finding the object of interest in successive
frames. SSD was used to calculate the distance between
the template and the image. It gives the same weight
to each pixel and is not robust to small perturbation
and background clutter. The template has a specific
shape, ellipse or rectangle, which inevitably includes
some background pixels if the object is not perfectly
in that shape or the tracker does not locate the object
precisely. If the background has similar appearance as the
object due to the illumination change, low contrast and
noise, the appearance model cannot distinguish it from the
background and tracking is prone to drift away. A fixed
appearance template is not sufficient to handle recently
changes in the video, while a rapidly changing model is
susceptible to drift. Two approaches have been proposed
to overcome the drift problem [10], [11]. In the algorithm
proposed in [10], the updated template is aligned with
the first template to obtain the final update in order to
eliminate drift. In [11], template update is determined by
evaluating the error occurring in the next image using the
proposed criterion. The method requires no parameters to
be adjusted and should be adaptive to deformation at any
noise level. Here we propose a robust template matching
algorithm that handles small perturbation, background
clutter and updating the template.

A. Image Euclidean Distance

Wang et al. [12] propose a new Euclidean distance
for images, which is dubbed as Image Euclidean Dis-
tance(IMED). Unlike the traditional Euclidean distance,
IMED takes into account the spatial relationships of
pixels. Therefore, it is robust to small perturbation. In this
section, we summarize their algorithm and detail how it is
used in our framework for template matching and derive
a probabilistic output from it.

In [12], it has been shown SSD is not a good metric
to measure the image distance and a good one should
contain the information of pixel distances. If the metric
coefficients depend properly on the pixel distances, the
computed Euclidean distance is insensitive to small de-
formation.

A Euclidean distance between the template and the
tracked object is defined as d(x, y) = [(x − y)T G(x −
y)]1/2. The metric coefficient gij , where G = (gij), is
the Gaussian function, written as

gij = f(|Pi − Pj |) =
1

2πσ2
exp{−|Pi − Pj |2/2σ2} (7)

where Pi and Pj are two pixels, |Pi − Pj | is the pixel
distance, and σ is the width parameter. We set σ to be 1
in the rest of paper for simplification.

Suppose that two images z and t are rasterized
to form two vectors, z = (z1, z2, · · · , zMN ), t =
(t1, t2, · · · , tMN ), where z is the tracking result and t
is the template, then the IMED is given by

d2
IME(z, t) =

1
2π

MN∑

i,j=1

exp{−|Pi−Pj |2/2}(zi−ti)(zj−tj).

(8)
The probability of the presence of the tracked object

given the template is written as

pIME(z|t) = exp{−d2
IME(z, t)} (9)

which shows that small distance gives high probability.

B. Image Weighted Distance

When we use a rectangle or ellipse to select the region
of interest, we inevitably include some background in the
region of interest. The background will contaminate the
template and contribute to tracking failure. Inspired by
[13], we propose an image weighted distance method to
overcome this problem.

The image weighted distance is given by

dIMW (z, t) =
MN∑

i=1

wi(zi − ti)2 (10)

where wi is the weight assigned to the square difference
of each pixel. The weights are smaller for pixels that are
farther from the center. Using these weights increases the
robustness of matching since the peripheral pixels are the
least reliable, being often affected by occlusion, clutter or
interference from the background. The weight function is
a 2D Gaussian kernel. Suppose w and h are the width
and height of the image, respectively. The weight for the
pixel at location (x, y) is

w(x, y) = 1− 1
2
{(x− x0

w/2
)2 + (

y − y0

h/2
)2} (11)

where x0 and y0 is the center of the template. The
probability of the object being tracked given the template
is

pIMW (z|t) = exp{−d2
IMW (z, t)} (12)

C. Template Update

The object appearance remains the same only for a
certain period of time, but eventually the template is no
longer an accurate model of the object appearance. If we
do not update the template, the template cannot capture



the variations in object appearance due to illumination or
pose variations. If we update the template too often, small
errors are introduced each time the template is updated.
The errors are accumulated and the tracker drifts from the
object. We propose an effective template updating strategy
which achieves a compromise.

We attempt to overcome the drift problem by introduc-
ing a library of templates and using mixed probabilities.
The mixture of Gaussian distributions is used in [14] to
simultaneously model and track feature sets and in [15]
to model the history intensity of each pixel. The tracking
probability for template matching given the template
library t1:K , p(z|t1:K), is written as

p(z|t1:K) = pIME(z|t1:K) pIMW (z|t1:K)

= {
K∑

k=1

wk ∗ pIME(z|tk)} {
K∑

k=1

wk ∗ pIMW (z|tk)} (13)

where K is the number of templates in the library and
wk is the weight assigned to the template tk.

When the tracker starts working, the template is added
to the library when the probability p(z|t1:k) is below
some threshold p0. After the number of templates in the
library reaches the maximum value K, the template with
the smallest weight is replaced by the tracking result
when p(z|t1:k) < p0. The weight of each model increases
when the appearance of the tracking object and template
is close enough and decreases vice versa. In general,
newly-added templates are less reliable than the old ones.
The variation in structure and appearance may be due to
transient environmental effects. To model the effect of a
particular template gaining “trust”, its weight is increased
each time p(z|tk)k=1,2,···,K exceeds some threshold. The
increase is at the expense of the other templates. We apply
the strategy suggested in [14] to update the weight of the
mixture model and the weights are updated as

wf+1
i =

{
(wf

i + α) 1
1+α if p(z|ti) > pi0

wf
i

1
1+α otherwise,

(14)

where pi0 is the threshold for template ti, α is the learning
rate such that α ∈ (0, 1), and f is the frame number. The
value of α sets the rate at which component rankings are
changed and outmoded representations are removed and
“trust” in new representations is gained.

V. INCREMENTAL NONLINEAR SUBSPACE UPDATE

PCA uses a low dimensional space to approximate
a high dimensional space, but it restricts itself to a
linear setting, where high-order statistical information is
discarded. Kernel PCA overcomes this disadvantage by
using a ‘kernel trick’. The essential idea of the kernel
PCA is to avoid the direct evaluation of the required dot
product in a high-dimensional feature space using the
kernel function. Hence, no explicit nonlinear mapping
function projecting the data from the original space to
the feature space is needed. Since a nonlinear function is
used, albeit in an implicit fashion, high-order statistical in-
formation is captured. Probabilistic PCA [16], [17] gives

a probabilistic output by decomposing the data space
into two subspaces, a principle subspace and a residual
subspace. Kernel PCA is implemented by mapping the
data space to a higher dimensional space using a nonlin-
ear function. Probabilistic kernel PCA has demonstrated
its advantage over other traditional subspace approaches
in face recognition [18]. We propose an approach that
analyzes kernel principal components in a probabilistic
manner by using probabilistic kernel PCA.

For each frame, we need to update the current eigenba-
sis with the tracking result. In [19], [20], the eigenbasis
is updated without storing the covariances or the previ-
ous training examples using the probabilistic PCA for
tracking. We show that when we use probabilistic kernel
PCA, the eigenbasis can be incrementally updated very
efficiently by augmenting the kernel Gram matrix with
one row and column.

Below, we review the probabilistic kernel PCA in [18]
and give the details on updating the kernel Gram matrix.

A. Probabilistic Analysis of Kernel Principal Components

Suppose that x1, x2, · · · , xN are the given training sam-
ples in the original data space Rq . Kernel PCA operates in
a higher dimensional feature space induced by a nonlinear
mapping function φ : Rq → Rf , where f > q and f could
even be infinite.

Probabilistic analysis assumes that the data in the
feature space follows a special factor analysis model
which related an f -dimensional data φ(x) to a latent q-
dimensional variable z as

φ(x) = µ + Wz + ε (15)

where z ∼ N(0, Iq), ε ∼ N(0, σ2If ), and W is a f × q
loading matrix. Therefore, φ(x) ∼ N(µ, Σ), where Σ =
WWT + σ2If .

The probability has the form

p(φ(x)) = (2π)−d/2|Σ|−1/2exp{−1
2
(φ(x)−µ)T Σ−1(φ(x)−µ)}

(16)
The maximum likelihood estimates for µ and W are

given by

µ =
1
N

N∑
n=1

φ(xn), W = Uq(Λq − σ2Iq)1/2R (17)

where R is any q × q orthogonal matrix, and Uq and Λq

contain the top q eigenvectors and eigenvalues of the C
matrix, where C = N−1

∑N
n=1(φn − φ0)(φn − φ0)T ,

where φ0 = µ, φn = φ(xn).
The MLE for σ2 is approximated as

σ2 ' 1
f − q

{tr(K)− tr(Λq)} (18)

where the (i, j)th entry of the kernel Gram matrix K can
be calculated as follows:

Kij = φ(xi)T φ(xj) = k(xi, xj) (19)



The determinant of Σ is given by

|Σ| = σ2(f−q)

q∏

i=1

λi (20)

where λi are eigenvalues of the kernel Gram matrix K.
Given a vector y ∈ Rq , the Mahalanobis distance

L(y) = (φ(y) − µ)T Σ−1(φ(y) − µ) is calculated as
follows:

L(y) = σ−2{gy − hT
y JQM−1QT JT hy} (21)

where gy and hy are defined by:

gy = k(y, y)− 2kT
y s + sT Ks (22)

hy = ky −Ks (23)
ky = [k(x1, y), · · · , k(xN , y)]T (24)

s = N−1j (25)
j = [1, 1, · · · , 1]T (26)

and J,Q and M are given

J = N−1/2(I −N−1jjT ) (27)
Q = Vq(Iq − σ2Λ−1)1/2R (28)

M = σ2Iq + WT W (29)

where Vq are eigenvectors of kernel Gram matrix K.
There is no explicit nonlinear mapping involved in the

calculation. More detailed derivation can be found in [18].

B. Incremental Update of Kernel Gram Matrix

The nonlinear space is divided into M nonlinear sub-
spaces, each subspace modelled by probabilistic kernel
PCA. The final probability of the tracking object z is
defined as a mixture distribution:

pKPCA(φ(z)) =
M∑

m=1

wm ∗ pm(φ(z)) (30)

where pm(φ(z)) is the probability of kernel PCA in the
mth subspace and wm is the mixture weight. The most-
recent tracking result is added to the subspace which has
the maximum probability pm(φ(z)). In order to obtain the
probability of tracking, we only need to update the kernel
Gram matrix K. The kernel Gram matrix is updated as:

Kf+1 =
(

Kf k(x, y)
kT (x, y) k(y, y)

)
(31)

where f is the index of the frame and x1, x2, · · · , xn are
all the points in the subspace, y is the current tracking
result. k(x, y) = (k(x1, y), k(x2, y), · · · , k(xn, y))T . This
requires a lot of storage space because one has to save all
the previous tracking results to calculate the kernel Gram
matrix. To overcome this problem, we set a limit on the
number of samples in each cluster. The oldest sample is
discarded to leave the space for the most-recent one. We
follow the same strategy used for template matching to
update the weights for the subspaces.

VI. TARGET TRACKING AND CLASSIFICATION

This section describes the vehicle tracking and classi-
fication algorithm. In section VI-A, the state space model
used for tracking and classification is described. Tracking
and classification are implemented simultaneously by
estimating the posterior distribution . In section VI-B,
mixtures of PPCA is briefly described which is used
to estimate the distribution of identity variable for the
classification.

A. State Space Model

A time series state space model uses the state variable
xt = {nt, θt}, which includes identity variable nt and 2D
affine transformation motion parameters θt. The system
equation is written as

nt = nt−1 θt = θt−1 + ut, t ≥ 1 (32)

where we assume that the motion variable follows a
Markov process with ut as a white Gaussian noise pro-
cess. nt ∈ N = {1, 2, · · · , N} indexes the gallery set
{I1, I2, · · · , IN}.

A simple formulation of the observation equation can
be characterized as

Zt = T{Yt; θt} = Int + Vt (33)

Where Zt is the image patch of interest in the video frame,
T is an affine transformation to normalize the image to the
same size of the gallery images, and Vt is the noise. The
observation equation is equivalently characterized by the
likelihood p(Yt|nt, θt) = p(Zt|nt). In the next section,
we define p(Zt|nt) as mixtures of PPCA.

The essence of the framework is posterior proba-
bility computation, i.e. computing p(nt, θt|Y1:t), whose
marginal posterior probability p(nt|Y1:t) solves the classi-
fication task and marginal posterior probability p(θt|Y1:t)
solves the tracking task.

Classification is based on a Maximum A Posteriori
(MAP) decision rule, namely finding nt that maximizes
p(nt|Y1:t). The Sequential Importance Sampling(SIS)[9]
method is used to approximate and propagate the pos-
terior probability p(nt, θt|Y1:t), and marginalization over
variable θt is carried out before applying the classification
rule. Detailed descriptions can be found in [7].

B. Mixtures of Probabilistic PCA

Subspace analysis techniques have attracted growing
interest in computer vision research. In particular, eigen-
vector decomposition has been shown to be an effective
tool for solving problems by using low-dimensional vec-
tor to represent high-dimensional vector. Here we will
follow [8] for the mixtures of PPCA.

Given a set of m by n images {Zi}, we form a set
of vectors {ti}, where ti ∈ Rd=mn, by lexicographic
ordering of the pixel elements of each image Zi. For any
t in {ti}, we relate it to a corresponding γ-dimensional
vector variable x as:

t = Wx + µ + ε (34)



where d À γ and µ is the mean of the x.
For the case of isotropic noise ε ∼ N(0, σ2I) , the

distribution over t-space for a given x of the form

p(t|x) = (2πσ2)−d/2exp{− 1
2σ2

‖t−Wx− µ‖2} (35)

With a Gaussian prior for the x, we obtain the marginal
distribution of t

p(t) = (2π)−d/2|C|−1/2exp{−1
2
(t− µ)T C−1(t− µ)},

(36)
where the covariance is

C = σ2I + WWT . (37)

The mixtures of PPCA can model more complex data
structures. The model parameters are determined using
maximum likelihood estimation. The mixture model is
defined as:

p(t) =
M∑

i=1

πip(t|i) (38)

where p(t|i) is a single PPCA model and πi is the
corresponding mixing proportion, with πi ≥ 0 and∑

πi = 1. Now the three parameters µ, W and σ2 are
associated with each of the M mixture components. We
use an iterative EM algorithm for estimation of the model
parameters.

VII. TRACKING EVALUATION

Most practical tracking systems often fail under some
situations. This could be either because of illumination
changes, pose variation or occlusion. Therefore, the need
for automatic performance evaluation emerges in these
applications. Fig.2 shows the tracking result after run-
ning the tracker for some time. The bounding box is
so large that one concludes that the tracker is already
failing. Hence, evaluation is necessary to help us terminate
tracking and restart the detection-tracking-classification
sequence.

Figure 2. The vehicle is off tracking.

Our evaluation algorithm is based on measuring the
appearance similarity and tracking uncertainty. The fol-
lowing features are examined in our evaluation:

1) Trace complexity qtc: We define the trace complex-
ity as the ratio of the curve length and straight
length between the target centroids in different
frames.

2) Motion step qms: It is defined as the distance
between the box centers in two consecutive frames.

3) Scale change qsc: To examine changes in object
scale, we use two clues. One is the ratio of the
current area to the initial area, the other is the scale
change velocity.

4) Shape similarity qss: The change in the aspect ratio
of the bounding box is also useful in providing some
information about the object shape. It is defined as
the ratio of the current aspect ratio over the initial
ratio.

5) Appearance change qac: Three measures are used
in our algorithm, the first one is the absolute pixel
by pixel change between the current frame and
the initial frame, the second one is the histogram
difference between the current frame and the initial
frame and the last one is related to the tracking
algorithm over which the proposed algorithm was
tested.

To obtain a comprehensive measure of the tracking
performance, we combine the above five indicators. We
first use empirical thresholds to find whether the tracker
is uncertain according to the above five metrics, then we
sum the five indicators using different weights to arrive
at a confidence measure q. If the sum drops below some
threshold, we conclude that the tracking performance is
poor and needs re-initialization.

q =
∑

j∈J

wjI[qj < λj ], J ∈ {tc,ms, sc, ss, ac} (39)

where wj and λj are the corresponding weights and
thresholds for the evaluation.

VIII. EXPERIMENTS

In this section, we give details of our implemen-
tation. Training and testing are described in the next
two sections respectively. In our experiment, the vehicle
motion is characterized by θ = (a1, a2, a3, a4, tx, ty),
where {a1, a2, a3, a4} are the deformation parameters and
(tx, ty) are the 2D translation parameters. By applying
an affine transformation using θ as parameters, we crop
the region of interest so that it has the same size as the
still template in the gallery and perform zero-mean-unit-
variance normalization. The region of interest is 24× 30
in size.

A. Training

We use one video sequence for each vehicle and obtain
the tracking result. Then we select 36 images for each
vehicle in the gallery. The pertinent parameters for the
experiment are M = 2 and γ = 15.

Six vehicles are used in the experiment and there are
a total of 216 images in the gallery. After we have the
gallery images, we use mixtures of PPCA to estimate the
parameters πi,µi, Wi and σ2

i .



B. Testing

For each frame, we get the motion parameters after
tracking and cropping out the region of interest from
the original image. After performing zero mean and unit
variance operation, we use the result to estimate the
posterior probabilities of observing each vehicle. We pick
the vehicle which has the highest probability as our
classification result after normalization. The probabilities
propagate to the next frame. In each frame, if the confi-
dence measure is below some threshold, the detection will
restart 20 frames before the drifting point and tracking and
classification will restart too.

Fig. 3 shows the tracking and recognition results for
‘wetting1’ and Fig. 4 is for ‘bmp1’. In Fig. 3, The image
on the top is the tracking result for the current frame.
We put a bounding box for the vehicle which we are
tracking in each frame with a different color for different
vehicles. The image on the bottom left is the classification
score which is the probability of seeing each vehicle in
the video. It shows the result from the first frame to
the current frame. The image to the right is the tracking
confidence measure which represents the probability of
the correct tracking result. We will restart detection and
tracking if the measure falls below the threshold of 0.5.
The same description applies to Fig. 4.
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Figure 3. Tracking and recognition results for ‘wetting1’. The results
are from frame 1 to 799. The top panel shows the original image and
tracking result, the bottom left panel shows the recognition density
p(nt|Y1:t), and the bottom right panel shows the tracking confidence
q.

From Fig. 3, we observe that the recognition result for
the ‘wetting1’ is very good because a high probability
is associated with ‘wetting’ (dotted blue line) on almost
every frame. There are several peaks and valleys for
the dotted blue line due to the re-initialization of the
tracking and the evaluation probability on the right drops
very quickly at corresponding frames. In Fig. 4, for the
recognition of ‘bmp1’, it is confused by ‘brdm’ for first
half of the sequence. The tracker quickly drifts away
after about 40 frames given the initial location. The
result becomes stable and correct after 400 frames. After
running the whole video sequence, the correct recognition
result is quite good. For this situation, we will classify
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Figure 4. Tracking and recognition results for ‘bmp1’. The results are
from frame 1 to 830.

that the vehicle we are tracking is ‘bmp’ which yields the
correct result.

We divide the sixty probe video sequences into ten
groups. Each group has each of the six different vehicles.
The classification results of one group are summarized
in Table I. Each number in a row is the recognition
percentage of the vehicle. Taking the second row as an
example, 93.13% of the whole sequence recognizes the
vehicle as ‘m60’, while 1.39% as ‘brdm’, 3.01% as ‘bmp’,
1.07% as ‘akj’ and 1.40% as ’clw’. No frame recognizes
it as ‘wetting’. The elements in the diagonal give the
correct recognition score for our experiment. The overall
accuracy of the recognition is 90.06%. Our experiment
results show all the six probe video sequences can be
classified correctly using our proposed method.

IX. CONCLUSION

In this paper, we have proposed an approach for ve-
hicle classification by integrating detection, tracking and
recognition. After the moving target is detected using
temporal variance analysis, it is tracked and classified
simultaneously using a robust and adaptive appearance
model and mixtures of probabilistic principal component
analysis. The multiplication of the outputs of two tem-
plate matching algorithms and probabilistic kernel PCA
yields tracking probability. Evaluation of the tracking
performance is performed at each frame. If the perfor-
mance falls below some threshold, the cycle of detection,
tracking and classification is re-initiated, otherwise the
tracking and classification propagates to the next frame.
The experiment results prove our method’s robustness and
effectiveness. Our approach can be used as a practical and
robust system for surveillance or military purpose from
the realm of research to practice.
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